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AI is revolutionizing automized 
execution of many cognitive tasks 

▪ ML algorithms at times exhibit above-
human accuracy for certain tasks

▪ ML algorithms can create realistic 
images from a text input

The AI revolution
A portrait photo of a kangaroo wearing an orange 

hoodie and blue sunglasses standing on the grass 

in front of the Sydney Opera House holding a sign 
on the chest that says Welcome Friends!
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▪ Compute requirements 
for large AI training jobs are 
doubling every 2 months

▪ Unsustainable without 
significant hardware and 
software innovation

Mehonic and Kenyon, Nature, 2022 

Compute demands for AI
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DL’s computational efficiency problem

Transformer model

8 GPUs
0.5 days
~27 kWh
26 lbs CO2

Strubell, Ganesh, McCallum, arXiv:1906.02243, 2019

1 Transformer (big) training run, is ~1 weeks 

of home energy consumption

4

Transformer (base) 65M parameters

8 GPUs

3.5 days
~201 kWh
192 lbs CO2

Transformer (big) 213M parameters

Vaswani et. al., NIPS, 2017 



Matrix-vector multiplications constitute 70-90% of the total 

deep learning operations
Input  vector 𝑥 Output vector 𝑦

Weight matrix 𝑊

𝑦 = 𝑊 𝑥

5

Breakdown of arithmetic operations 

Source: https://www.ibm.com/blogs/research/2018/06/approximate-computing-ai-acceleration/

Fleischer, Shulka , IBM Research Blog, 2018
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Cost of data transfer

Horowitz, ISSCC, 2014
Dally, ScaledML, 2019

Processor

Conventional von Neumann 

computing architecture

Memory

Moving data dominates power consumption



Efficiency matters even more at the Edge …
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Google Images;
S. Kulkarni et al, MWSCAS, 2017

▪ AI for mobile devices, e.g., authentication, speech recognition, 
mixed/augmented reality

▪ Embedded processing for the Internet of Everything, 
e.g., smart cities and homes

▪ Embedded processing for prosthetics, wearables and 
personalized healthcare

▪ Real-time Video Analytics for Autonomous Navigation and control

… especially for energy and memory constrained 

embedded applications



AI Systems: Trends & Opportunities

→ Energy to move data dominates compute energy

→ Neural network complexity increases exponentially

→ Neural networks are dominated by MVMs 

★ Minimize data movement by performing computation directly (or nearby) 
where the data resides

★ Introduce novel computational primitives that facilitate the DL workloads

Key 
trends

Opportunities
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In-Memory Computing (IMC) for DL  
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Multiply by vector Ԧ𝑥

⋯

⋯
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in-place parallel-processing
⟹𝓞(𝟏)

matrix-vector-multiplication (MVM) 𝑨 × Ԧ𝑥 = Ԧ𝑦
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In-memory Matrix-Vector Multiplication (MVM):

▪ The inputs Ԧ𝑥 are applied at the rows 

▪ The weights 𝐴𝑖,𝑗 are stored in the memory

▪ The outputs Ԧ𝑦 appear at the columns

In-Memory Computing (IMC) in a nutshell 

In-place MVM operations with O (1) time complexity

Output vector Ԧ𝑦
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Xia, Yang, Nature Materials, 2019
Eleftheriou, et al., IBM J. R&D, 2019

Sebastian, et. al.,, Nature Nano, 2020

Merrick-Bayat et al., IEEE TNNLS, 2017

Papistas et al., IEEE CICC, 2021

Burr, et al., Adv. Phys. X, 2017

Moons, IEEE CICC, 2018



IMC memory technology trade-offs

Considerations for choosing the right memory

▪ Performance: TOPS & TOPS/W

▪ Density: die area, which affects cost

▪ Volatility, write time/energy & endurance: 
static weights or reloadable weights

▪ Stability (temperature, drift, noise):
Accuracy; suitabilty for Edge applications

▪ Manufacturing process, compatibility:
Supplier risk & cost 
Does it scale to lower technology nodes? Lanza et. al., Science 2022

F: represents feature size, L: denotes number of layers
Embedded

Comparison of best performances of 

commercial stand-alone memories in 2021
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System design trade-offs

Energy efficiency vs. Accuracy
▪ Low effective precision of weights/activations 

increases efficiency but decreases accuracy
▪ Analog architectures require high resolution 

DACs/ADCs for high accuracy impacting energy 
efficiency

Endurance & noise effects vs. training
▪ Memory cycling endurance determines 

suitability for training and/or inference 
applications

▪ Noise and nonlinear effects affect precision of 
MVM, thus dictating complex “HW Aware 
Training” schemes

Compute density vs. re-programmability
▪ The smallest cell-size memory technologies 

exhibit high write-latency precluding re-
programmability

▪ With fast re-programmability, there is no need to 
map entire DNNs onto multiple crossbar arrays, 
which affects compute density

Scalability 
▪ Mature technologies can scale better with 

technology node 
▪ Compatibility with CMOS crucial for successful 

commercialization of the IMC technology
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Using SRAM as example

▪ Fastest read time → highest performance

▪ Fastest write time → re-programmability

▪ Highest endurance → longevity

▪ Low noise, no drift → better accuracy

▪ Standard manufacturing process → scalability

▪ Largest cell size→ low density

▪ Idle and retention power → high power 

consumption

+ ⎼
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Phase-Change Memory (PCM)

Principle: Two distinct solid phases of a 
Ge-Sb-Te metal alloy to store a bit

⎼ Transition between phases by controlled heating 
and cooling

⎼ Intermediate phases to obtain a continuum 
of different states or resistance levels

⎼ Well understood device physics and successfully 
commercialized technology

14Source: IBM Research

Key enablers:

⎼ Multilevel memory capability: Analog storage device; 
but with drift and noise

⎼ Accumulative behavior: Nonvolatile nanoscale integrator; 
but stochastic and nonlinear

Sebastian, Le Gallo, Eleftheriou , J. Phys. D: Appl. Phys., 2019

Coductance Range: 

~50KΩ – 50MΩ

Read speed: ~100ns, 

Write speed: ~100ns

14
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MVM using PCM technology

15

Exact yi value
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Le Gallo, et. al., IEEE Trans. on Electron Devices, 2018

▪ A is a 256X256 Gaussian matrix coded in a PCM chip

▪ Ԧ𝑥 is a 256-long Gaussian vector applied as voltage

Measurements using Fusion IBM’s 1st gen analog AI chip, 1M PCM devices, 90nm CMOS

Precision equivalent to 

4-bit fixed point arithmetic

⎼ Matrix elements ⇾ conductances gm,n

⎼ Input vector ⇾ read-voltage pulse vm

⎼ Currents in ⇾ result vector

v1

v2

i1 i2 i3

g1,1 g2,1

g1,2 g2,2

g3,1

g3,2

𝑨 × Ԧ𝑥 = Ԧ𝑦



Inference 
on PCM-based IMC

“Almost” SW equivalent accuracies 

can be achieved over a long time

16V. Joshi, et al., Nature Communications, 2020 16

Image classification: ResNet-32 trained on CIFAR-10

  
 

  
 

  
 

  
 

  
 

  
 

  
 

    

    

    

    

    

    

    

            

 
  
 
 
  
 
  
 
 
  
 
 
 
 
  
 
 
  
 
 

        

           

             

                  

”Hardware-aware training”

▪ Custom training approach needed to 
account for the conductance distributions

▪ Incorporation of “injective” noise and drift 
compensation techniques during training



PCM-based IMC core

▪ A is a 256X256 Gaussian matrix coded in a PCM chip

▪ x is a 256-long Gaussian vector applied as voltage

Hermes: IBM’s 2nd generation analog AI chip

⎼ 256 x 256 PCM unit-cell array

⎼ 4 PCM devices per unit cell

⎼ Local digital processing unit

⎼ 14 nm CMOS technology

⎼ INT8 arithmetic
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Hermes Core Micrograph
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representative storage characteristicsTEM

8T4R

Unit-cell 8T4R

Input/weight/output bits 8b/Analog/8b

Throughput (TOPS) 1.008

Energy efficiency (TOPS/W) 10.5

Area efficiency (TOPS/mm2) 1.59
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Khaddam-Aljameh et. al., VLSI Technology Symposium, 2021



”Bit-slicing” for high precision

▪ A is a 256X256 Gaussian matrix coded in a PCM chip

▪ x is a 256-long Gaussian vector applied as voltage
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TQ

Principle:  
▪ Construct an MVM crossbar array from 

sub-arrays representing smaller bit widths 

▪ Each sub-array processes one bit field or 
‘slice’ of an operand

⎼ Map an n-bit element of a weight matrix ➔
onto n binary memory cells – n bit-slices

⎼ Map an m-bit element of an input activation ➔
onto m bit-slices

⎼ Multiply in-place activation “bit-slices” with 
matrix weight ”bit-slices”

⎼ Combine partial products via shift-and-add 
reduction networks

Sebastian, Le Gallo, Khaddam-Aljameh, Eleftheriou, Nature Nano., 2020

Le Gallo et. al., Neuromorphic Comput. Eng., 2022
Tradeoff between precision and compute density



Analog SRAM-based IMC
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▪ volatile (persistent) 
binary storage element

▪ read/write speed: ~1ns 
@ 14nm node

✗ prone to device mismatch
✗ prone to voltage drop (IR)

✓ low metal cap. mismatch
✓ no significant voltage drop
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SRAM cell

6T SRAM cell

Current-based

(SRAM-controlled current sources)

Charge-based

(SRAM + switched capacitors)



SRAM & switched-cap approach
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MAP to SRAM 

content

MAP to cap 

voltage

DECIPHER 

from voltage

along the BL

SRAM cells used to store the elements of a binary matrix

▪ Step 1: Capacitors charged to input values

▪ Step 2: Capacitors associated with value 0 are discharged

▪ Step 3: Capacitors shorted along the columns 

Biswas et al., ISSCC, 2018
Valavi et al., JSSC, 2019
Khaddam-Aljameh et.al., IEEE TVLSI, 2020

“Charge sharing principle” … with bit-slicing

For multi-bit weights:

▪ Step 4: A/D conversion

▪ Step 5: Bit-shift/add results

▪ Step 6: Summing up



An alternative SRAM scheme

ideal fixed-point

8-bit fixed-point

analog MAC
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Normalized fixed-point MAC output

14 nm CMOS layout 

INT8 weight/activations, 512x512 MVM
14nm transistor-level Spectre simulation

Khaddam-Aljameh et. al., IEEE TVLSI, 2020

In-memory MVM with precision that 

scales linearly in Area, Time, and Power 21

Principle:
▪ Pipeline DAC: Generates weight proportional voltage Vw

▪ Switched-Cap DAC: Multiplies Vw with the input bits

Interleaved switched-capacitor-based multiplier



Inference on interleaved
switched-cap-based IMC

14 nm CMOS layout 

3x3 noisy conv, 128, /2

3x3 noisy conv, 128

ImageNet dataset: 

(1000 classes and 

224x224 image size)

INT8 arithmetic 

with analog MAC
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69,76 69,4 69,14
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fp-32 int8 analog int8

ResNet-18 trained on ImageNet

▪ Int8 model with “noisy convolutions” achieves 0.26% 
lower accuracy compared to ideal noiseless model

▪ No retraining or recalibration was applied to the model
after post-training quantization 

Error in 8-bit LSB

from Spice ported 

in PyTorch



Digital SRAM-based IMC

Thetis Core: Axelera’s 1st generation digital IMC chip

⎼ Area: 8.6 mm2

⎼ Throughput: 39.3 TOPs

⎼ Energy efficiency: 14.11 TOPs/W

⎼ Energy efficiency (normalized 1bIN-1bW): 903 TOPS/W

⎼ INT8 arithmetic  

SRAM

weight

High-level architecture

23



14 nm CMOS layout 

ImageNet dataset: 

(1000 classes and 

224x224 image size)

Thetis core: energy efficiency vs. utilization

11.4TOPS/W
@ 6.25% utilization

9.1TOPS/W
@ 1.6% utilization

14.1TOPS/W
@ 100% utilization

24

13 TOPS/W
@ 25% utilization

For all practical use cases the energy efficiency remains “almost” constant

By reducing utilization from 
100% to 25%, the energy 
efficiency drops by only 7%



Inference on digital SRAM-based IMC 

14 nm CMOS layout 
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ResNet-50

Network FP-32 accuracy
Axelera-AI

Int-8 accuracy

ResNet-18​ 69.76​ 69.57 (-0.19)

ResNet-34 73.31​ 73.21 ​ (-0.10)

ResNet-50 76.13​ 76.03 ​ (-0.10)

No need for costly ”quantization aware” or “HW aware” 
training

⎼ Calibrate pre-trained model using  small subset of training data

⎼ Use statistics to compute clipping ranges and scaling factors

A “calibrated model” running on digital SRAM-based 

IMC with INT8 arithmetic delivers FP32 iso-accuracy

Image classification accuracy on ImageNet



Device PCM PCM RRAM MRAM A-SRAM A-SRAM Digital CMOS D-SRAM

CMOS technology 14nm 40nm 22nm 22nm 16nm 28nm 16nm 12nm

Input/weight/output 
precision

8b/analog/8b 8b/8b/19b 8b/8b/14b 1b/1b/4b 4b/4b/8b 8b/8b/22b 8b/8b/8b 8b/8b/32

Energy efficiency
(TOPS/W)

10.5 20.5 15.6 5.1 121 27.75 0.96 14.11

Energy efficiency 
(TOPS/W) (normalized: 

1bIN-1bW)
336 1312 998.4 5.1 1936 1776 61.44 903

Area efficiency
(TOPS/mm²)

1.59 0.026 0.005 0.758 2.67 0.1 1.29 6.64

The state-of-the-art in IMC

26

A-SRAM: Analog SRAM-based IMC Lanza et. al., Science, 2022

D-SRAM: Digital SRAM-based IMC



Analog or digital MAC?
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▪ Analog computations are 
more efficient than digital for 
low bit precisions

▪ Analog energy cost rises 
steeply for high bit precisions

Below 8-bit precision, analog realizations can be superior to digital ones

Qualitative plot of energy cost for MAC operations vs. 
bit precision

Murmann., IEEE TVLSI, 2021



Analog or digital IMC?
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For practical crossbar-array sizes and INT8 weight/activations, 

digital IMC can be more energy efficient than analog IMC 
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Khaddam-Aljameh, PhD Dissertation, ETH, 2022
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IMC co-processor architecture
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IMC crossbar array IMC core IMC co-processor

Communication fabric
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▪ Crossbar arrays with analog or 
digital memory cells

▪ ”Bit-slicing” techniques to 
alleviate precision issues

▪ IMC array for matrix vector 
multiplications  (MVM)

▪ DPU for element-wise vector 
operations, vector reduction 
functions, and activations 

▪ 2-D mesh topology for systems  
with a large number of cores 

▪ Fully-connected topology for  
systems with a small-number 
of cores 



Concluding remarks
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▪ The specific requirements that memory devices need to fulfill when used for IMC 
depend highly on the application

▪ Further improvements needed to make memristive IMC competitive against 
custom digital accelerators and SRAM-based IMC

– Compute densities in excess of 7 TPOS/mm2

– Compute precision of at least 5- to 6-bit fixed-point arithmetic 

▪ Analog IMC appears to require sophisticated HW-aware training to achieve FP32 
iso-accuracies

▪ Digital IMC with INT8 arithmetic offers high throughput, high energy efficiency, high 
compute density and FP32 iso-accuracy without retraining


